

CuCrZr

EN_2024_06

Comparable standards: Aurubis designations: UNS C18150 / C18160 / C18400 • PNA 372

Description

CuCrZr is a precipitation hardened alloy with additions of chrome and zirconium. The alloy has very high electrical and thermal conductivy at good strength levels. Furthermore CuCrZr offers outstanding relaxation and softening resistance. The properties make the alloy suited for complicated technical application where a high

conductivy is demanded, and the component is exposed to stresses and temperatures.

Composition

Cu	Cr	Zr
[%]	[%]	[%]
rem	0.5-1.2	0.05-0.25

Composition of this alloy is in accordance with RoHS for electric & electronic components and ELV for the automotive industry.

Physical properties

Mechanical properties

	Melting point	Density	с _р @ 20°С	Young's modulus	Thermal cond.	Elec co	trical nd.	α @20-300°C
	[°C]	[g/cm³]	[kJ/kgK]	[GPa]	[W/mK]	[MS/m]	[%IACS]	[10 ⁻⁶ /K]
	1081	8.94	0.383	136	330	≥ 50	≥86	18.6
1	Noto: The creek		c., specific	neat capacity	1			

Note: The specified conductivity applies to the soft condition only.

 α coefficient of thermal expansion

	Tensile Strength	Yield Strength	Elongation A ₅₀	Hardness HV	Bend 90°	ratio [r]	Bend 180	ratio ° [r]
	[MPa]	[MPa]	[%]	[-]	GW	BW	GW	BW
R480	480-560	≥450	≥ 10	150-190	0	0	1	1.5
R540	540-660	≥500	≥ 4	160-200	1	1	2	2.5
R540S	540-660	≥500	≥7	160-190	0	0	1	1.5
R600	≥600	≥550	≥ 2	≥ 160	2	2		

r = x * t (thickness $t \le 0.5 mm$)

GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction.

Fabrication	
properties	

good
excellent
excellent
excellent
good
excellent
fair
fair

Electrical conductivity

The electrical conductivity depends on chemical composition, the level of cold deformation and the grain size. A high level of deformation as well as a small grain size decrease the conductivity.

CorrosionCuCrZr is resistant to: Natural and industrial atmospheres as well as maritime air, drinking and
service water, non oxidizing acids, alkaline solutions and neutral saline solutions.
CuCrZr is not resistant to: Ammonia, halogenide, cyanide and hydrogen sulfide solutions and
atmospheres, oxidizing acids and sea water (especially at high flow rates).

Stress relaxation data of CuCrZr shown as residual stress against Larson Miller Parameter. The Larson Miller Parameter represents temperature and time. Test method: Mandrel test according to ASTM E328.

This leaflet is for general information only and is not subject to revision. No claims can be derived from it unless there is evidence of intent or gross negligence. The data given are no warranty that the product is of a specified quality and they cannot replace expert advice or the customer's own test.